If it's not what You are looking for type in the equation solver your own equation and let us solve it.
68x^2-26x-4=0
a = 68; b = -26; c = -4;
Δ = b2-4ac
Δ = -262-4·68·(-4)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-42}{2*68}=\frac{-16}{136} =-2/17 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+42}{2*68}=\frac{68}{136} =1/2 $
| 8n+5(n−3)=245 | | 12x+14-×=12(x+3) | | (7x+3)=(6x+1) | | 7m^2-14m=-7 | | -11x+13=12 | | -3(14+15r)-2r=-14(r+3) | | 3-3.7b=10.36+10.3b+10 | | 2x-6+35x=67(x+3) | | (7x+3)+(6x+1)=90 | | 1.6x=30-x | | y=0.06^2+9.6X+5.4 | | 0.3a=1.9 | | 0.7313=x/12 | | 7x=5x=6 | | 66x-5+x=7(x+3) | | 2(x+1)^2-1=9 | | 8x-39=25 | | 97.2x+6x-3=19(x+3) | | 1/3t=t-145 | | G/3-2=1(g÷3-2=1) | | 3(t-6)-2=4 | | 240x-120=120 | | 5+3x-x=1x(x+3) | | 180x+360=360 | | 18x-77=157 | | 7x+.4=48 | | 2y+100=4y-7 | | 12x+144=168 | | -3x+6+5x=-24 | | X+1.6-3x=2(x+3) | | 10,000d+128,000,000=150,000,000 | | 45x+90=180 |